FestivalNauki.ru
En Ru
cентябрь-ноябрь 2020
176 городов
September – November 2020
312 cities
09-11 октября 2020
МГУ | Экспоцентр | 90+ площадок
14–16 октября 2016
Центральная региональная площадка
28–30 октября 2016
ИРНИТУ, Сибэскпоцентр
14–15 октября 2016
Центральная региональная площадка
23 сентября - 8 октября 2017
«ДонЭкспоцентр», ДГТУ
ноябрь-декабрь 2018
МВДЦ «Сибирь»,
Вузы и научные площадки города
6-8 октября 2017
Самарский университет
27-29 октября
Кампус ДВФУ, ВГУЭС
30 сентября - 1 октября
Ледовый каток «Родные города»
21-22 сентября 2018 года
ВКК "Белэкспоцентр"
9-10 ноября 2018 года
Мурманский областной Дворец Культуры
21-22 сентября 2019 года
22-23 октября 2019 года
29-30 ноября 2019 года
7-8 сентября 2019 года
27-29 сентября 2019 года
4-5 октября 2019 года
10-12 октября 2019 года

Инфракрасный свет позволит напечатать из полимера что угодно

Российские ученые разработали новую технологию создания 3D-объектов из фотополимеров с наночастицами. Твердые микроструктуры любой формы можно будет получить с помощью низкоинтенсивного инфракрасного света. Новая разработка может помочь в биомедицине, в области создания новых материалов и способов их конструирования для приложений 3D-лазерного рисования, микрообработки, голографии, микро- и оптоэлектроники, формирования оптических элементов, записи и хранения данных. Результаты исследования опубликованы в журнале Scientific Reports. Исследования поддержаны грантами Российского научного фонда (РНФ).

Ученые разработали новую технологию, которая позволяет создавать объемные структуры за счет запуска реакции фотополимеризации низкоинтенсивным инфракрасным светом. Ученым удалось создать 3D структуры размером от нескольких сантиметров до нескольких микрометров (с толщину человеческого волоса).

Фотополимеризация – это облучение полимера ультрафиолетовым светом, то есть излучением с энергией большей, чем у видимого света, но меньшей, чем у рентгеновского излучения. Этот принцип многим знаком от стоматологов – эффект применяется при создании самых современных пломб, светополимерных. Новая технология позволяет создавать твердые структуры с помощью инфракрасного излучения. Добиться этого удалось с помощью специальных наночастиц, которые обладают уникальным свойством: поглощая несколько квантов света (фотонов) с более низкой энергией, они излучают один фотон с более высокой энергией. Этот эффект называется апконверсией и позволяет преобразовать инфракрасное излучение в излучение с более высокой энергией – ультрафиолетовое, а оно в свою очередь запускает процесс фотополимеризации.

Ученые создали такие наночастицы, причем, в отличие от предыдущих исследований, авторам удалось достигнуть очень высокой эффективности преобразования инфракрасного света в ультрафиолетовое излучение. Уникальные свойства полученных частиц позволили авторам работы впервые показать возможность создания 3D-структур заданной формы за счет эффекта апконверсии.

«На сегодняшний день лишь в нескольких пионерских работах демонстрировалась фотополимеризация через процесс апконверсии. Однако в этих исследованиях не была продемонстрирована возможность формирования 3D-структур, что необходимо для дальнейшей разработки и внедрения этой инновационной технологии», — рассказал Кирилл Хайдуков, один из авторов исследования, младший научный сотрудник Федерального научно-исследовательского центра «Кристаллография и фотоника» РАН.

Исследователи разработали экспериментальную установку для создания 3D-структур из полимера. Наночастицы с эффектом апконверсии помещали в жидкий полимер. На полученный раствор направили инфракрасный луч, которым можно управлять с помощью контролирующей системы зеркал. Направляя инфракрасный луч в нужную область, исследователи смогли создать структуру нужной формы.

Исследователи надеются, что технологию можно будет применять во многих областях техники и промышленности. Новая разработка может помочь в области создания новых материалов и способов их конструирования для приложений 3D-лазерного рисования, микрообработки, голографии, микро- и оптоэлектроники, формирования оптических элементов, записи и хранения данных. Помимо этого, инновационная методика, по мнению авторов, найдет применение и в медицине.

«В качестве одной из возможных областей применения, имеющих огромную социальную значимость, рассматриваются биомедицинские приложения, в частности тканевая инженерия, которая позволяет замещать повреждения органов и тканей с помощью различных полимерных материалов. Мы ожидаем, что предложенная нами технология позволить получать конструкции необходимого размера с требуемыми микро- и макро-характеристиками непосредственно в живых тканях для замещения повреждений», — добавил ученый.

Работа проведена в Федеральном научно-исследовательском центре «Кристаллография и фотоника» РАН при участии коллег из Института биоорганической химии имени М.М. Шемякина и Ю.А. Овчинникова РАН, Первого Московского государственного медицинского университета имени И.М. Сеченова и Московского технологического университета (МИТХТ).

 

Источник http://rscf.ru

Добавьте свой комментарий

Plain text

  • Переносы строк и абзацы формируются автоматически
  • Разрешённые HTML-теги: <p> <br>
LiveJournal
Регистрация

Другие статьи в этой рубрике

Химики создали программу для безопасного хранения и утилизации реактивов

Американские ученые создали компьютерную программу для поиска безопасных и эффективных способов хранения и утилизации химических реактивов.

Гравитационная линза впервые помогла рентгеновским наблюдениям

Оптическое и рентгеновские изображения линзированной галактики
M. Bayliss  et al. / Nature Astronomy, 2019

Физики получили пластичное стекло

Ученые создали тонкие пленки из стеклообразного оксида алюминия, которые можно растягивать, сжимать и изгибать без появления трещин при комнатной температуре.

Новости в фейсбук