Учёные МГУ придумали, как различать пучки спутанных фотонов
Учёные физического факультета МГУ имени М.В.Ломоносова разработали метод, позволяющий создавать два пучка спутанных фотонов и измерять задержку между ними. В будущем результаты могут быть использованы в высокоточных измерениях, исследовании материалов и в информационных технологиях. Статья опубликована в журнале Optics Letters.
В 1966 году профессор кафедры квантовой электроники физического факультета МГУ Давид Николаевич Клышко открыл эффект параметрического рассеяния света, за что физик и его коллеги позднее были удостоены Государственной премии СССР. Это открытие стало началом квантовой оптики, популярного сегодня раздела физики, изучающего квантовые свойства света. Эффект довольно прост: приходящий в кристалл фотон распадается на два других фотона, сумма частот которых при этом равна первоначальной. Важно, что этот процесс может наблюдаться только в нелинейных кристаллах, в которых частота фотонов может изменяться в процессе рассеяния.
Эффект нашел применение во множестве областей: исследовании самих кристаллов, измерении эффективности фотодетекторов и, собственно, в квантовой оптике, где были продемонстрированы успехи в области квантовой криптографии, квантовых вычислений, а также в красивом эффекте квантовой телепортации. Дело в том, что рождающиеся фотоны оказываются в спутанном состоянии: при измерении поляризации одного фотона, квантовое состояние поляризации второго изменится. Измерение свойств одного фотона «чувствуется» другим моментально, правда, информацию таким способом передавать невозможно.
В недавнем эксперименте учёные МГУ под руководством ведущего научного сотрудника кафедры квантовой электроники физического факультета МГУ Марии Чеховой попробовали генерировать не отдельные пары спутанных фотонов, а большое их количество — в форме двух мощных пучков из их пар.
«В таком случае у нас коррелируют между собой не отдельные фотоны, а целые пучки. И возникает вопрос: с какой точностью? — поясняет Павел Прудковский, один из соавторов работы. — И если мы задержим один пучок, то вопрос сведётся к тому, насколько надо его задержать, чтобы мы могли заметить это рассогласование».
Для ответа на этот вопрос учёным предстояло заставить фотоны разных частот не разлетаться под разными углами из кристалла, а формировать два пучка света и лететь вместе, параллельно друг другу. Чтобы получить их, кристалл ниобата лития, который обычно используется в таких экспериментах, пришлось выращивать с определённой структурой: наводить в нём дополнительную апериодическую, заранее рассчитанную решётку доменов.
В ходе эксперимента учёные заставили один из двух спутанных пучков фотонов немного задержаться, проходя дополнительный путь, после чего оба пучка попали во второй кристалл — обычный ниобат лития. «В этом кристалле уже происходит сложение частот фотонов, и если пучки приходят синхронно, то сложение происходит эффективнее, чем в других случаях, — пояснил Прудковский. — В результате мы получаем узкий пик в сигнале суммарной частоты. И ширина этого узкого пика — 90 фемтосекунд (10-15 с) — и есть главное достижение».
Таким образом, учёным удалось экспериментально зарегистрировать почти минимально возможный сдвиг между пучками-близнецами спутанных фотонов, который возможно зафиксировать при помощи приборов. По словам учёных, ещё уменьшить эту величину в дальнейшем возможно, однако для этого необходимо усложнить схему эксперимента. «Пока 90 фемтосекунд — это рекордная величина, но она может быть меньше, и мы знаем, что для этого необходимо сделать», — пояснил Прудковский. По его словам, поскольку период волны лазерного излучения составляет единицы фемтосекунд, есть возможность уменьшения длины этой задержки и доведения её до порядка десятка фемтосекунд.
Результаты исследования пригодятся в разработке зашифрованных каналов связи, устойчивых к вмешательству и «прослушке». При попытке перехватить пучок спутанных фотонов злоумышленнику так или иначе придется его задержать, однако это вмешательство не останется незамеченным. Помимо этого, регистрация задержки двух квантово-запутанных пучков может найти применение в определении очень слабых, едва уловимых примесей в веществах.
Фото: Фотография картины рассеяния. Источник: Павел Прудковский
Добавьте свой комментарий