FestivalNauki.ru
En Ru
cентябрь-ноябрь 2020
176 городов
September – November 2020
312 cities
09-11 октября 2020
МГУ | Экспоцентр | 90+ площадок
14–16 октября 2016
Центральная региональная площадка
28–30 октября 2016
ИРНИТУ, Сибэскпоцентр
14–15 октября 2016
Центральная региональная площадка
23 сентября - 8 октября 2017
«ДонЭкспоцентр», ДГТУ
ноябрь-декабрь 2018
МВДЦ «Сибирь»,
Вузы и научные площадки города
6-8 октября 2017
Самарский университет
27-29 октября
Кампус ДВФУ, ВГУЭС
30 сентября - 1 октября
Ледовый каток «Родные города»
21-22 сентября 2018 года
ВКК "Белэкспоцентр"
9-10 ноября 2018 года
Мурманский областной Дворец Культуры
21-22 сентября 2019 года
22-23 октября 2019 года
29-30 ноября 2019 года
7-8 сентября 2019 года
27-29 сентября 2019 года
4-5 октября 2019 года
10-12 октября 2019 года

Ученые доказали способность сильно расходящегося лазерного излучения самофокусироваться в воде

Российские физики экспериментально доказали способность сильно расходящегося лазерного излучения самофокусироваться в воде. Этот эффект можно использовать для создания перестраиваемых высокоэффективных источников лазерного излучения высокой пиковой мощности, что может быть востребовано при лечении заболеваний глаз. Работа выполнена в рамках гранта Президентской программы исследовательских проектов, реализуемой Российским научным фондом (РНФ), и опубликована в журнале Physical Review A.

В рамках гранта РНФ ученые с физического факультета МГУ под руководством Федора Потемкина исследуют новые подходы к использованию лазерного излучения в медицинских и научных целях. Лазерное излучение может оказывать силовое воздействие на кристаллы, полупроводники, комбинированные среды, а также на такие биологические объекты, как, например, человеческий глаз.

Ученые надеются найти решение проблем, связанных с деструкцией стекловидного тела глаза – гелеподобного вещества между хрусталиком и сетчаткой. При этой патологии образующие стекловидное тело коллагеновые волокна, слипаясь, формируют непрозрачные конгломераты, приводящие к ухудшению зрения. До сих пор основным методом борьбы с ней является витрэктомия – полное удаление стекловидного тела и использование вместо него специальных заменителей, что чревато их отторжением и потерей зрения.

Альтернатива – воздействие на эти образования наносекундными лазерами с длиной волны 1,06 мкм (примерно в 50 раз меньше толщины человеческого волоса), на которую колбочки глаза, отвечающие за цветовое восприятие, не реагируют. «Холодный» лазер фокусируется вглубь глаза, нагревая строго определенное место, и все вредные конгломераты в буквальном смысле испаряются, превращаясь в пузырек воздуха. Проблема в том, что наносекундный лазер из-за высокой энергии импульсов создает большую зону повреждения. Именно поэтому ученые пытаются освоить менее инвазивные фемтосекундные лазеры для этих целей, энергия импульса в которых на несколько порядков меньше, а также разрабатывают различные методы диагностики для слежения за процессом в режиме реального времени. Если в наносекундном лазере энергия импульса составляет несколько десятков миллиджоулей, то в фемтосекундном лазере для эффективной работы необходимо создать энергии в микроджоули. Это в тысячу раз меньше, что сделает зону повреждения глаза гораздо меньше.

В своей последней работе ученые решили исследовать феномен филаментации, самофокусировки, сильно расходящегося лазерного пучка в воде — как в наиболее подходящем прототипе стекловидного тела глаза.

«Грубо говоря, при явлении филаментации поперечный размер пучка начинает меняться по определенному закону, хотя никакой фокусирующей оптики может и не быть, – пояснил Потемкин. – Благодаря этому излучение может распространяться на очень большие дистанции, практически не расходясь».

Обычно процессы филаментации ученые наблюдают при больших энергиях импульсов — порядка миллиджоулей в слабофокусированных пучках. Потемкин же с коллегами задался целью изучить возможность филаментации в остросфокусированных лазерных пучках при энергиях в микроджоули, поскольку до недавнего времени считалось, что это невозможно.

«Мы разрушили сразу два представления: что создать филаментацию в среде нельзя, используя сильно расходящиеся пучки, и тем более нельзя, используя сверхмалые энергии», – рассказал автор работы.

В эксперименте ученые светили сфокусированным лазерным пучком в прозрачный плоский сосуд с дистиллированной водой. Перемещая сосуд, они заставляли лазерный луч фокусироваться либо в 0,5 мм над поверхностью воды, а дальше расходиться в ее глубине, либо в ее толще, в 0,5 мм от ее поверхности. При помощи спектральной аппаратуры в обоих случаях изучался процесс филаментации лазерного пучка при его распространении в воде. При этом о наличии филаментации можно было судить по уширению частотного спектра прошедшего через сосуд излучения.

«Суперконтинуум – это обогащение спектра фемтосекундного излучения в центральной части пучка дополнительными частотами в процессе филаментации, когда у возникающего излучения спектр шире, чем у входного, – пояснил Потемкин. – Мы показали, что процесс филаментации возможно получить, используя остросфокусированное излучение, а работа в режиме сильнорасходящегося пучка наиболее перспективна. В этом случае мы имеем возможность управления процессом филаментации и спектром выходного излучения». Эксперимент показал, что управлять филаментацией можно, просто изменяя расстояние от точки фокуса до поверхности воды.

В экспериментальной работе принимали участие студенты из МГУ, а с теоретическим описанием зарегистрированного явления помогали коллеги из Франции.

В будущем можно ожидать использование полученного эффекта при создании коммерческих лазеров ультракороткой длительности, перестраиваемых по длине волны от видимого до среднего ИК-диапазона. Управление филаментацией лазерного излучения может найти применение в лабораторной спектроскопии, когда ученым требуется исследовать коллебательный спектр различных материалов, в том числе и белков, а подстраиваясь под резонансные частоты таких молекул, они могут исследовать их свойства во времени с фемтосекундной длительностью и пространстве с микронным разрешением. Наконец, возможность создавать локализованное воздействие на определенном расстоянии от границы среды с возможностью подбора оптимальных параметров излучения и диагностикой в режиме реального времени найдет применение в офтальмологии, для которой изначально и планировались эти исследования.

Добавьте свой комментарий

Plain text

  • Переносы строк и абзацы формируются автоматически
  • Разрешённые HTML-теги: <p> <br>
LiveJournal
Регистрация

Другие статьи в этой рубрике

Графен в медицине

Ксения Рыкова для ПостНауки

Астрономы поймали длинный гамма-всплеск от взрыва далекой сверхновой

Астрономы смогли достоверно обнаружить новую пару сверхновая—гамма-всплеск в далекой галактике. Подобные открытия позволяют понять связь между этими катаклизмами и более детально разобраться в механизмах генерации гамма-всплесков.

Взрыв сверхновой разложили на этапы

Сверхновые звёзды — основной источник элементов жизни во Вселенной. Существование человечества и всего живого стало возможно благодаря тем химическим элементам, которые были получены в результате взрыва сверхновых звёзд.

Новости в фейсбук