FestivalNauki.ru
En Ru
cентябрь-ноябрь 2020
176 городов
September – November 2020
312 cities
09-11 октября 2020
МГУ | Экспоцентр | 90+ площадок
14–16 октября 2016
Центральная региональная площадка
28–30 октября 2016
ИРНИТУ, Сибэскпоцентр
14–15 октября 2016
Центральная региональная площадка
23 сентября - 8 октября 2017
«ДонЭкспоцентр», ДГТУ
ноябрь-декабрь 2018
МВДЦ «Сибирь»,
Вузы и научные площадки города
6-8 октября 2017
Самарский университет
27-29 октября
Кампус ДВФУ, ВГУЭС
30 сентября - 1 октября
Ледовый каток «Родные города»
21-22 сентября 2018 года
ВКК "Белэкспоцентр"
9-10 ноября 2018 года
Мурманский областной Дворец Культуры
21-22 сентября 2019 года
22-23 октября 2019 года
29-30 ноября 2019 года
7-8 сентября 2019 года
27-29 сентября 2019 года
4-5 октября 2019 года
10-12 октября 2019 года

Пульсары предложили использовать как детекторы гравитационных волн

Астрономы пришли к выводу, что пульсары можно использовать для регистрации гравитационных волн, так как такое возмущение должно привести к временному изменению скорости вращения тела. Более того, зная относительные положения источника волны и пульсара можно получить информацию об уже зарегистрированных на Земле в прошлом волнах, пишут авторы в препринте на arXiv.org.

Пульсары — это вращающиеся нейтронные звезды, причем их ориентация такова, что исходящие с их магнитных полюсов узкие конусы излучения попадают на Землю, но из-за вращения источника наблюдаются в виде строго периодических всплесков. По массе нейтронные звезды примерно соответствуют Солнцу, но их размер составляет всего около 10 километров, из-за чего их вращение оказывается очень стабильным. Иными словами, пульсары можно использовать в качестве своеобразных «часов», стабильный ход которых меняется лишь под воздействием конкретных факторов.

Пульсары различаются по степени стабильности периода: как правило, современные атомные часы точнее пульсаров, но некоторые миллисекундные пульсары, такие как J0437-4715, обладают точностью 10−17 секунд, что находится на уровне наилучших современных атомных часов. На более высоких частотах период пульсаров испытывает хаотические колебания.

Известно, что период пульсаров может меняться. В частности, наблюдаются глитчи — резкие ускорения вращения примерно на миллионную долю. После такого скачка период постепенно возвращается к исходному или близкому к нему значению на масштабе от нескольких дней до нескольких лет. Считается, что глитчи связаны с внутренними процессами нейтронной звезды, такими как растрескивание коры, а не с внешними силами.

Индийские астрофизики под руководством Аджита Шриваставы (Ajit Srivastava) из Института физики в Бхубанешваре предложили рассмотреть в качестве подобного внешнего воздействия гравитационные волны — колебания метрики пространства-времени, рождаемые при слиянии массивных тел, таких как черные дыры и нейтронные звезды. Авторы пришли к выводу, что эти возмущения могут оказывать заметное влияние на скорость вращения пульсаров.

Предложенный механизм воздействия связывает прохождение гравитационной волны с деформацией тела и соответствующим изменением его момента инерции — меры инертности при вращательном движении, аналогичной массе при поступательном. В результате скорость вращения должна измениться примерно на 10−16 долю — это на уровне предельной точности современных телескопов.

Дополнительными благоприятными обстоятельствами может оказаться относительная близость пульсара к источнику волны (тогда возмущение метрики около него будет гораздо сильнее, чем у Земли), а также возможное совпадение ее частоты с резонансом внутренних колебаний нейтронной звезды. Ученые пишут, что в таком случае можно ожидать одновременно как усиления эффекта на порядки, так и увеличения продолжительности. Так, гравитационный всплеск длительностью всего несколько миллисекунд может привести к изменению частоты вращения пульсара на десять минут — такой эффект будет легче зарегистрировать.

Также благодаря пульсарам могут оказаться возможным изучение уже прошедших сквозь Землю гравитационных волн. Авторы приводят список потенциальных близких источников гравитационных волн — сверхновых — и пульсаров, на которых в течение ближайших 50 лет должно сказаться это воздействие. Например, волна от сверхновой SN1987A должна повлиять на пульсары J0709-5923 и B0559-57, соответствующие изменения будут наблюдаться на Земле в 2023 и 2024 годах.

Ранее ученые нашли самую массивную нейтронную звезду, впервые зафиксировали слияние нейтронной звезды и черной дыры, а также доказали причастность слияний нейтронных звезд к коротким гамма-всплескам.

Тимур Кешелава

Источник: N+1

Добавьте свой комментарий

Plain text

  • Переносы строк и абзацы формируются автоматически
  • Разрешённые HTML-теги: <p> <br>
LiveJournal
Регистрация

Другие статьи в этой рубрике

Графен в медицине

Ксения Рыкова для ПостНауки

Астрономы поймали длинный гамма-всплеск от взрыва далекой сверхновой

Астрономы смогли достоверно обнаружить новую пару сверхновая—гамма-всплеск в далекой галактике. Подобные открытия позволяют понять связь между этими катаклизмами и более детально разобраться в механизмах генерации гамма-всплесков.

Взрыв сверхновой разложили на этапы

Сверхновые звёзды — основной источник элементов жизни во Вселенной. Существование человечества и всего живого стало возможно благодаря тем химическим элементам, которые были получены в результате взрыва сверхновых звёзд.

Новости в фейсбук