FestivalNauki.ru
En Ru
cентябрь-ноябрь 2020
176 городов
September – November 2020
312 cities
09-11 октября 2020
МГУ | Экспоцентр | 90+ площадок
14–16 октября 2016
Центральная региональная площадка
28–30 октября 2016
ИРНИТУ, Сибэскпоцентр
14–15 октября 2016
Центральная региональная площадка
23 сентября - 8 октября 2017
«ДонЭкспоцентр», ДГТУ
ноябрь-декабрь 2018
МВДЦ «Сибирь»,
Вузы и научные площадки города
6-8 октября 2017
Самарский университет
27-29 октября
Кампус ДВФУ, ВГУЭС
30 сентября - 1 октября
Ледовый каток «Родные города»
21-22 сентября 2018 года
ВКК "Белэкспоцентр"
9-10 ноября 2018 года
Мурманский областной Дворец Культуры
21-22 сентября 2019 года
22-23 октября 2019 года
29-30 ноября 2019 года
7-8 сентября 2019 года
27-29 сентября 2019 года
4-5 октября 2019 года
10-12 октября 2019 года

Радиоволны помогли нейросети распознать действия человека через стену

Tianhong Li et al. / ICCV, 2019

Американские разработчики создали нейросеть, способную распознавать действия людей как по видеозаписи, так и по данным радиоволнового сканирования через стену и другие препятствия. Авторы достигли этого благодаря тому, что сначала данные обоих типов преобразуются в скелетную модель, а затем ее анализирует единый алгоритм распознавания действий. Разработка будет представлена на конференции ICCV 2019, а статья о опубликованана сайте Массачусетского технологического института.

В области компьютерного зрения достаточно часто применяются технологии распознавания позы тела по видео. Зачастую эти алгоритмы используют для определения поведенческих параметров человека или сразу множества людей. Для этого алгоритм создает из исходных кадров скелетообразную модель тела, которую можно сравнить с позами, характерными для того или иного вида деятельности. К примеру, индийские разработчики создали дрон, способный распознавать насилие в толпе, а российские инженеры разрабатывают устройство, способное распознавать падение или необычное поведение пожилых людей в доме.

Как и другие технологии компьютерного зрения, алгоритмы для создания модели тела сильно зависят от качества кадров и освещения, а также не работают, когда тело на кадре закрыто другими объектами. Существуют также технологии, использующие в качестве данных радиоволновые сигналы, а не видеозапись. Однако пока эти технологии имеют существенно меньшую точность.

Инженеры из Массачусетского технологического института под руководством Дины Катаби (Dina Katabi) создали алгоритм, совмещающий оба типа данных. Его можно представить в виде трех основных модулей. Сначала «сырые» данные с камеры или радиоприемопередатчика подаются на соответствующую нейросеть, создающую скелетообразную модель тела. После этого следующий алгоритм анализирует модели на кадре, подбирая соответствующие действия. Он также способен определять и совместные действия, такие как рукопожатие.

Для получения визуальных данных разработчики использовали систему из нескольких камер, открытый алгоритм AlphaPose и алгоритм, превращающий двумерные скелетообразные модели в трехмерные. Для радиоволнового сканирования через стены и другие препятствия, инженеры создали приемопередатчик, работающий на частотах от 5,4 до 7,2 гигагерц. Он оснащен двумя наборами антенн, ориентированных вертикально и горизонтально. Они излучают радиоволны, а затем принимают отражения от объектов. Из этих сигналов формируются двумерные изображения, а затем нейросеть для создания скелетообразных моделей получает пару таких изображений (для вертикального и горизонтального массива антенн).

 

Схема работы алгоритмов

Tianhong Li et al. / ICCV 2019

Разработчики обучили нейросети, входящие в состав алгоритма, на нескольких датасетах, в том числе собственным для создания модели по радиосигналам, а также публично доступном датасете распознавания действий PKU-MMD. Тестирование алгоритма показало, что его точность определения действия при видимости человека составляет 87,8 процента, а при работе через стену точность снижается до 83 процентов.

Недавно другие американские разработчики создали метод идентификации человека через стену по видеозаписи и сигналу Wi-Fi. Видеозапись в нем используется для создания модели изменения принимаемого радиосигнала, а затем реальные данные с Wi-Fi приемника сопоставляются с этой моделью.

Григорий Копиев

Источник: N+1

Добавьте свой комментарий

Plain text

  • Переносы строк и абзацы формируются автоматически
  • Разрешённые HTML-теги: <p> <br>
LiveJournal
Регистрация

Другие статьи в этой рубрике

Химики создали программу для безопасного хранения и утилизации реактивов

Американские ученые создали компьютерную программу для поиска безопасных и эффективных способов хранения и утилизации химических реактивов.

Гравитационная линза впервые помогла рентгеновским наблюдениям

Оптическое и рентгеновские изображения линзированной галактики
M. Bayliss  et al. / Nature Astronomy, 2019

Физики получили пластичное стекло

Ученые создали тонкие пленки из стеклообразного оксида алюминия, которые можно растягивать, сжимать и изгибать без появления трещин при комнатной температуре.

Новости в фейсбук