FestivalNauki.ru
En Ru
cентябрь-ноябрь 2020
176 городов
September – November 2020
312 cities
09-11 октября 2020
МГУ | Экспоцентр | 90+ площадок
14–16 октября 2016
Центральная региональная площадка
28–30 октября 2016
ИРНИТУ, Сибэскпоцентр
14–15 октября 2016
Центральная региональная площадка
23 сентября - 8 октября 2017
«ДонЭкспоцентр», ДГТУ
ноябрь-декабрь 2018
МВДЦ «Сибирь»,
Вузы и научные площадки города
6-8 октября 2017
Самарский университет
27-29 октября
Кампус ДВФУ, ВГУЭС
30 сентября - 1 октября
Ледовый каток «Родные города»
21-22 сентября 2018 года
ВКК "Белэкспоцентр"
9-10 ноября 2018 года
Мурманский областной Дворец Культуры
21-22 сентября 2019 года
22-23 октября 2019 года
29-30 ноября 2019 года
7-8 сентября 2019 года
27-29 сентября 2019 года
4-5 октября 2019 года
10-12 октября 2019 года

Электрические цепи помогли физикам подсмотреть за топологическим состоянием света


E. Edwards / JQI

Физики из России и Италии построили электрическую схему для симуляции динамики взаимодействия фотонов. Разработанная учеными схема позволила смоделировать топологические краевые состояния двух запутанных фотонов. Работа представлена в журнале Nature Communications.

В последние десятилетия ученые активно изучают топологические эффекты в физике. Например, фотонные топологические состояния могут помочь в создании топологически защищенных квантовых компьютеров. Такие состояния обладают большей когерентностью, что позволяет физиками лучше управлять ими. На сегодняшний день реализация фотонных топологических состояний является сложной экспериментальной задачей, однако, теоретические исследования показывают, что топологические эффекты можно наблюдать в системе взаимодействующих фотонов. 

Физики из ИТМО, МФТИ и Политехнического университета Торино рассмотрели цепочку нелинейных резонаторов, описываемых моделью Бозе — Хаббарда, в которых фотоны могут взаимодействовать. Взаимодействие квантовых частиц порождает связанные состояния фотонов. Однако, теория Бозе — Хаббрда не способна описать появление связных состояний, поэтому физики использовали более сложную модель, которая подразумевает два процесса: туннелирование фотонов между резонаторами и эффективное фотон-фотоное взаимодействие, возникающее из-за нелинейности среды. При определенных условиях краевые связные состояния фотонов, которые называются дублонами (doublones), можно описать как топологическое состояния света: модель, представленная физиками, в пределе сильного взаимодействия переходит в топологическую модель SSH (Su-Schrieffer-Heeger).

Тем не менее, создание топологических состояний света, в том числе и дублонов, инженерно трудная задача, поэтому ученые разработали электрическую цепь, которая эффективно моделирует одномерную квантовую задачу. 

 

Электрический аналог квантовой одномерной задачи. Направление, указанное красным, соответствует появлению состояний дублонов. Синяя точка — краевые дублонные состояния. Справа изображена фотография экспериментальной установки и образца.

Nikita A. Olekhno, et al. — Nature Communications 11, 1436 (2020).

 

Физики показали, что состояния дублонов действительно присутствуют в системе, с помощью анализа спектра связных состояний в электрической цепи. Для этого ученые прикладывали напряжение к одному из узлов цепи и снимали напряжения всех остальных узлов. Наличие пиков в спектре указало на то, что топологические краевые состояния возможны в моделируемой системе.

 

Спектр дублонов — наличие пиков свидетельствует о существовании краевых связных состояниях.

Nikita A. Olekhno, et al. — Nature Communications 11, 1436 (2020).

 

Ученые полагают, что представленная эмуляция двухфотонных топологических состояний может помочь физикам в исследовании топологических эффектов в физике взаимодействующих системах. 

Топология в физике крайне интересная тема: в 2016 году за открытие топологических эффектов в физике конденсированного состояния вручили Нобелевскую премию, а в 2018 году ученые из России впервые изготовили топологические наноструктуры для нелинейной генерации света.

Михаил Перельштейн

Источник: N+1

Добавьте свой комментарий

Plain text

  • Переносы строк и абзацы формируются автоматически
  • Разрешённые HTML-теги: <p> <br>
LiveJournal
Регистрация

Другие статьи в этой рубрике

Графен в медицине

Ксения Рыкова для ПостНауки

Астрономы поймали длинный гамма-всплеск от взрыва далекой сверхновой

Астрономы смогли достоверно обнаружить новую пару сверхновая—гамма-всплеск в далекой галактике. Подобные открытия позволяют понять связь между этими катаклизмами и более детально разобраться в механизмах генерации гамма-всплесков.

Взрыв сверхновой разложили на этапы

Сверхновые звёзды — основной источник элементов жизни во Вселенной. Существование человечества и всего живого стало возможно благодаря тем химическим элементам, которые были получены в результате взрыва сверхновых звёзд.

Новости в фейсбук