FestivalNauki.ru
En Ru
cентябрь-ноябрь 2020
176 городов
September – November 2020
312 cities
09-11 октября 2020
МГУ | Экспоцентр | 90+ площадок
14–16 октября 2016
Центральная региональная площадка
28–30 октября 2016
ИРНИТУ, Сибэскпоцентр
14–15 октября 2016
Центральная региональная площадка
23 сентября - 8 октября 2017
«ДонЭкспоцентр», ДГТУ
ноябрь-декабрь 2018
МВДЦ «Сибирь»,
Вузы и научные площадки города
6-8 октября 2017
Самарский университет
27-29 октября
Кампус ДВФУ, ВГУЭС
30 сентября - 1 октября
Ледовый каток «Родные города»
21-22 сентября 2018 года
ВКК "Белэкспоцентр"
9-10 ноября 2018 года
Мурманский областной Дворец Культуры
21-22 сентября 2019 года
22-23 октября 2019 года
29-30 ноября 2019 года
7-8 сентября 2019 года
27-29 сентября 2019 года
4-5 октября 2019 года
10-12 октября 2019 года

Сверхпроводники обнаружили сразу в двух метеоритах


James Wampler

Американские ученые обнаружили внеземные сверхпроводящие материалы сразу в двух образцах, которые принадлежат метеоритам Мандрабилла (Mandrabilla) и GRA 95205. Для этого они проанализировали образцы 15 космических тел, упавших на землю в разное время. Работа опубликована в журнале Proceedings of the National Academy of Sciences.

Сверхпроводимость невозможно объяснить при помощи классической физики: это квантовое явление, позволяющее некоторым материалам проводить электрический ток абсолютно без сопротивления. На сегодняшний день ученые знают несколько сотен чистых материалов, сплавов, керамик и соединений, которые способны переходить в сверхпроводящее состояние при разных температурах. До 1980-х годов физикам были известны материалы с довольно низкой температурой перехода в сверхпроводящее состояние (порядка нескольких кельвин). Однако вскоре оказалось, что существуют материалы и с куда более высокой температурой перехода — высокотемпературные сверхпроводники: их можно использовать в сверхпроводящем состоянии уже при температуре кипения жидкого азота — около 77 кельвин.

Не менее важной характеристикой сверхпроводящего состояния является эффект Мейснера — полное вытеснение магнитного поля из объема сверхпроводника. Проявление этого эффекта можно наблюдать при левитации магнита над охлажденным до критической температуры сверхпроводником. Так как сверхпроводник не пускает магнитное поле внутрь, он создает токи на своей поверхности, магнитное поле которых противодействует полю внешнему. Поэтому магнит отталкивается от поверхности сверхпроводника и вынужден парить в воздухе до тех пор, пока сверхпроводник вновь не будет нагрет до критической температуры.

Группа физиков во главе с Джеймсом Уэмплером (James Wampler) из Калифорнийского университета в Сан-Диего занялась поиском сверхпроводников внеземного происхождения. Для этого они исследовали образцы 15 различных метеоритов методом сверхчувствительной микроволновой спектроскопии с модуляцией магнитного поля. Ученые облучали образцы микроволновым излучением и постепенно остужали их, наблюдая за откликом их магнитного поля. При критической температуре на графике образуется пик, по которому можно зарегистрировать фазовый переход. Такой метод на несколько порядков чувствительнее стандартных методов работы со сверхпроводниками: только этого достаточно, чтобы регистрировать то малое количество сверхпроводящего вещества, которое содержится в метеоритах. В результате оказалось, что два метеорита из 15 — Мандрабилла и GRA 95205 — содержат в себе сверхпроводящие материалы. Их критическая температура — около 5 кельвин.

 

График MFMMS для метеорита Мандрабилла.

James Wampler et al./ PNAS, 2020

Метеориты Мандрабилла и GRA 95205 совсем не похожи друг на друга. Мандрабилла упал в Западной Австралии и преимущественно состоит из чистого никеля, его сплава с железом и кобальта — он относится к группе железных метеоритов. GRA 95205 нашли на Полярном плато в Антарктике, он принадлежит к более редкой группе — урелитам (между силикатными зернами урелитов находится богатое углеродом вещество, в некоторых образцах принимающее форму алмаза). Но, как выяснили ученые, в чем-то они похожи — оба метеорита содержат в своем составе сверхпроводящие материалы. При помощи дополнительных измерений и численных методов, ученым удалось выяснить примерный состав сверхпроводников — в обоих метеоритах к сверхпроводящим фазам принадлежат сплавы свинца, индия и олова.

 

Ученые считают, что их открытие может изменить наши представления о некоторых астрономических процессах. Исследованные материалы в космосе находятся в сверхпроводящем состоянии, а это может повлиять на формирование планет, несколько изменить форму и причины возникновения магнитных полей, наконец, влиять на движение заряженных частиц.

Ранее физики научили сверхпроводники создавать ток из тепла и предсказали сверхпроводимость при 200 градусах Цельсия.

Олег Макаров

Источник: N+1

Добавьте свой комментарий

Plain text

  • Переносы строк и абзацы формируются автоматически
  • Разрешённые HTML-теги: <p> <br>
LiveJournal
Регистрация

Другие статьи в этой рубрике

Графен в медицине

Ксения Рыкова для ПостНауки

Астрономы поймали длинный гамма-всплеск от взрыва далекой сверхновой

Астрономы смогли достоверно обнаружить новую пару сверхновая—гамма-всплеск в далекой галактике. Подобные открытия позволяют понять связь между этими катаклизмами и более детально разобраться в механизмах генерации гамма-всплесков.

Взрыв сверхновой разложили на этапы

Сверхновые звёзды — основной источник элементов жизни во Вселенной. Существование человечества и всего живого стало возможно благодаря тем химическим элементам, которые были получены в результате взрыва сверхновых звёзд.

Новости в фейсбук