FestivalNauki.ru
En Ru
cентябрь-ноябрь 2020
176 городов
September – November 2020
312 cities
09-11 октября 2020
МГУ | Экспоцентр | 90+ площадок
14–16 октября 2016
Центральная региональная площадка
28–30 октября 2016
ИРНИТУ, Сибэскпоцентр
14–15 октября 2016
Центральная региональная площадка
23 сентября - 8 октября 2017
«ДонЭкспоцентр», ДГТУ
ноябрь-декабрь 2018
МВДЦ «Сибирь»,
Вузы и научные площадки города
6-8 октября 2017
Самарский университет
27-29 октября
Кампус ДВФУ, ВГУЭС
30 сентября - 1 октября
Ледовый каток «Родные города»
21-22 сентября 2018 года
ВКК "Белэкспоцентр"
9-10 ноября 2018 года
Мурманский областной Дворец Культуры
21-22 сентября 2019 года
22-23 октября 2019 года
29-30 ноября 2019 года
7-8 сентября 2019 года
27-29 сентября 2019 года
4-5 октября 2019 года
10-12 октября 2019 года

Редкоземельные металлы помогут физикам построить большие квантовые сети

J.M. Kindem, et al. / Nature, 2020

Американские физики впервые реализовали высококогерентный контроль и считывание одиночных ионов иттербия, помещенных в оптический резонатор. Этот эксперимент открывает дорогу к созданию масштабных квантовых сетей, основанных на ионах. Работа представлена в журнале Nature.

Распределение квантовой запутанности на большие расстояния по оптическим квантовым сетям — это один из ключевых протоколов квантовой криптографии и распределенных квантовых вычислений. Твердотельные источники запутанности, связанные с оптическими резонаторами, являются перспективными кандидаты для реализации масштабируемых квантовых сетей. В частности, физики исследовали такие системы, как квантовые точки и дефекты в алмазе или карбиде кремния.

Однако, до сих пор масштабирование твердотельных систем остается под вопросом — центральной проблемой является поиск систем с контролируемыми когерентными оптическими и спиновыми переходами. Не так давно было обнаружено, что редкоземельные металлы в кристалле обладают достаточно когерентностью и, теоретически, могут быть связаны с оптическим резонатором.

Группа американских физиков под руководством профессора Андрея Фараона (Andrei Faraon) использовала ионы иттербия, изготовленные в кристалле, для демонстрации высокой когерентности спинового состояния и быстрого считывания состояния в оптическом резонаторе. 

В качестве кубитного состояния, на основе которого строилась запутанность, ученые использовали связные состояния электрона с ядром иона. Возбуждение кубита происходило с помощью микроволнового излучения, а измерения производились с помощью дополнительного импульса, приложенного к возбужденному состоянию кубита, которое приводило к флюоресценции иона, только если кубит находился в возбужденном состоянии. Измерения проводились с помощью сверхпроводящего детектора фотонов в криостате растворения на температуре 40 милликельвин.

 

A. Схема оптических переходов в ионе, связанном с резонатором. В. Характерная последовательность микроволновых импульсов. С. Фотография кристалла с ионами иттербия. D. Спектр отражения резонатора. E. Экспериментальная схема.

J.M. Kindem, et al. — Nature (2020).

 

Оптический резонатор, в которой был помещен ион, позволяет когерентно контролировать квантовое состояние иона, что было экспериментально подтверждено с помощью оптических осцилляций Раби

 

Измерения времени когерентности при разной температуре детектора.

J.M. Kindem, et al. — Nature (2020).

 

Построенная система обладает временем когерентности 30 миллисекунд — за это время фотоны могут пролететь тысячи километров по оптоволокну, что достаточно для создания масштабных квантовых сетей. Также ученые показали, что когерентность сохраняется и при температуре детектора 1,2 кельвина, что позволяет использовать дешевые гелиевые криостаты.

В последнее время физики много работают над созданием квантовой коммуникации. Недавно мы писали о том, что ученым из Китая впервые удалось запутать два узла квантовой памяти через оптоволокно длиной 50 километров, а группе из Швейцарии удалосьпостроить рекордно длинную микроволновую квантовую связь. Подробнее про квантовую коммцникацию вы можете прочитать в нашем материале «Квантовая связь без лишнего шума».

Михаил Перельштейн
 

Источник: N+1

Добавьте свой комментарий

Plain text

  • Переносы строк и абзацы формируются автоматически
  • Разрешённые HTML-теги: <p> <br>
LiveJournal
Регистрация

Другие статьи в этой рубрике

Графен в медицине

Ксения Рыкова для ПостНауки

Астрономы поймали длинный гамма-всплеск от взрыва далекой сверхновой

Астрономы смогли достоверно обнаружить новую пару сверхновая—гамма-всплеск в далекой галактике. Подобные открытия позволяют понять связь между этими катаклизмами и более детально разобраться в механизмах генерации гамма-всплесков.

Взрыв сверхновой разложили на этапы

Сверхновые звёзды — основной источник элементов жизни во Вселенной. Существование человечества и всего живого стало возможно благодаря тем химическим элементам, которые были получены в результате взрыва сверхновых звёзд.

Новости в фейсбук