FestivalNauki.ru
En Ru
cентябрь-ноябрь 2020
176 городов
September – November 2020
312 cities
09-11 октября 2020
МГУ | Экспоцентр | 90+ площадок
14–16 октября 2016
Центральная региональная площадка
28–30 октября 2016
ИРНИТУ, Сибэскпоцентр
14–15 октября 2016
Центральная региональная площадка
23 сентября - 8 октября 2017
«ДонЭкспоцентр», ДГТУ
ноябрь-декабрь 2018
МВДЦ «Сибирь»,
Вузы и научные площадки города
6-8 октября 2017
Самарский университет
27-29 октября
Кампус ДВФУ, ВГУЭС
30 сентября - 1 октября
Ледовый каток «Родные города»
21-22 сентября 2018 года
ВКК "Белэкспоцентр"
9-10 ноября 2018 года
Мурманский областной Дворец Культуры
21-22 сентября 2019 года
22-23 октября 2019 года
29-30 ноября 2019 года
7-8 сентября 2019 года
27-29 сентября 2019 года
4-5 октября 2019 года
10-12 октября 2019 года

Ученые намерены увеличить чувствительность нейтринного телескопа на Байкале, изучающего историю Вселенной

Ученые начали очередной этап работ по увеличению чувствительности нейтринного телескопа Baikal-GVD, погруженного в озеро Байкал, сообщил "Интерфаксу" директор НИИ прикладной физики Иркутского госуниверситета Андрей Танаев.

"Прошлогодняя Байкальская экспедиция завершилась установкой пятого кластера телескопа, в этом году планируется смонтировать еще три кластера - работы будут вестись до тех пор, пока это возможно на льду Байкала. В результате эффективный объем установки (телескопа - ИФ) вырастет до 0,35 куб. километров", - сказал он.

С учетом увеличения мощности телескоп сможет регистрировать больше событий от астрофизических высокоэнергичных нейтрино.

"Высокоэнергичные нейтрино - это очень редкие частицы, до сих пор они регистрировались с частотой буквально несколько раз в год. Но чем больше объем установки, тем больше шансов их пронаблюдать", - пояснил Танаев.

Он также добавил, что в текущем году завершается строительство первой очереди гамма-обсерватории ТАIGA в Тункинской долине в Бурятии, с помощью которой ученые изучают космические лучи сверхвысоких энергий.

"Надеюсь, к концу лета, в августе, состоится инаугурация установки, и она выйдет в рабочий, "боевой" режим. Финансирование идет в соответствии с графиком", - сказал Танаев.

Ранее сообщалось, что в состав гамма-обсерватории TAIGA войдет черенковская установка TAIGA-HiSCORE в составе 500 оптических станций, телескопы-рефлекторы системы Дэвиса-Коттона TAIGA-IACT (16 телескопов), а также установка TAIGA-Muon - сеть мюонных детекторов.

По данным ИГУ, оба проекта, TAIGA и Baikal-GVD, могут войти в состав научно-образовательного центра (НОЦ) "Байкал", создание которого сейчас активно обсуждается.

Проектирование нейтринного телескопа на Байкале объемом около кубического километра, получившего название Baikal-GVD, началось в 2010-2011 годах. Телескоп находится в толще воды и состоит из самостоятельных структурных единиц, называемых кластерами.

Первый кластер установки наращивался постепенно, в течение пяти лет велась разработка ее основных структурных элементов, а это не только оптические детекторы, но и электроника. В результате на проектную мощность он вышел только в 2016 году. В апреле 2017 года, с учетом наработок, был развернут второй кластер, в 2018-м - третий.

По данным ИГУ, к 2021 году должны работать уже 12 кластеров - все это входит в первый этап строительства нейтринного телескопа. Следующий этап, после 2021 года, включает в себя развертывание 27 кластеров.

Работу над проектом нейтринного телескопа ведет крупная международная коллаборация, основными участниками в которой выступают Институт ядерных исследований РАН, Объединенный институт ядерных исследований (Дубна), Иркутский государственный университет, МГУ им. М.В. Ломоносова.

Нейтрино - это элементарные частицы без электрического заряда. Регистрировать их довольно трудно. Исследования показали, что "поймать" нейтрино можно, если использовать подходящую мишень - в данном случае прозрачную воду Байкала. Реагируя с ней, нейтрино порождает электрически заряженные частицы, которые уже можно регистрировать приборами.

Нейтрино позволяют получить информацию о внутренней структуре самых мощных источников Вселенной. Это необходимо, чтобы понять историю возникновения Вселенной, ее развитие, современное состояние и что с ней будет в будущем.

Источник: http://www.ras.ru/digest/showdnews.aspx?id=22666a0a-115f-40f7-9811-2414ef38d2da.

Добавьте свой комментарий

Plain text

  • Переносы строк и абзацы формируются автоматически
  • Разрешённые HTML-теги: <p> <br>
LiveJournal
Регистрация

Другие статьи в этой рубрике

Графен в медицине

Ксения Рыкова для ПостНауки

Астрономы поймали длинный гамма-всплеск от взрыва далекой сверхновой

Астрономы смогли достоверно обнаружить новую пару сверхновая—гамма-всплеск в далекой галактике. Подобные открытия позволяют понять связь между этими катаклизмами и более детально разобраться в механизмах генерации гамма-всплесков.

Взрыв сверхновой разложили на этапы

Сверхновые звёзды — основной источник элементов жизни во Вселенной. Существование человечества и всего живого стало возможно благодаря тем химическим элементам, которые были получены в результате взрыва сверхновых звёзд.

Новости в фейсбук