FestivalNauki.ru
En Ru
cентябрь-ноябрь 2020
176 городов
September – November 2020
312 cities
09-11 октября 2020
МГУ | Экспоцентр | 90+ площадок
14–16 октября 2016
Центральная региональная площадка
28–30 октября 2016
ИРНИТУ, Сибэскпоцентр
14–15 октября 2016
Центральная региональная площадка
23 сентября - 8 октября 2017
«ДонЭкспоцентр», ДГТУ
ноябрь-декабрь 2018
МВДЦ «Сибирь»,
Вузы и научные площадки города
6-8 октября 2017
Самарский университет
27-29 октября
Кампус ДВФУ, ВГУЭС
30 сентября - 1 октября
Ледовый каток «Родные города»
21-22 сентября 2018 года
ВКК "Белэкспоцентр"
9-10 ноября 2018 года
Мурманский областной Дворец Культуры
21-22 сентября 2019 года
22-23 октября 2019 года
29-30 ноября 2019 года
7-8 сентября 2019 года
27-29 сентября 2019 года
4-5 октября 2019 года
10-12 октября 2019 года

В ритмах мозга левую руку отличили от правой

(Фото: yacobchuk1 / Depositphotos)

По электроэнцефалографии можно определить сигналы мозга, соответствующие тем или иным движениям тела.

Травмы головы и спины, инсульты, врождённые заболевания часто приводят к тому, что человек не может двигать рукой, ногой, или же оказывается парализован весь целиком. Способность двигаться таким пациентам могли бы вернуть протезы, управляемые силой мысли, которые считывали бы двигательные сигналы из мозга. Для разработки таких устройств необходимо найти чёткое и однозначное соответствие между конкретным движением и тем, что происходит в мозговых нейронах.

Как известно, электрическая активность мозга складывается в волны разной частоты. В зависимости от диапазона частот различают альфа-ритм, бета-ритм, тета-ритм, мю-ритм и прочие. В различных ситуациях может доминировать тот или иной тип. Например, расслабленное состояние связывают с доминированием альфа-ритма, а во сне сильнее всего дельта-волны. Ритмы мозга регистрируют с помощью электроэнцефалографии (ЭЭГ). Для ЭЭГ не нужно дорогостоящего оборудования и сложных манипуляций, однако аппарат ЭЭГ одновременно улавливает импульсы от многих групп нейронов, расположенных вблизи датчика. Эти импульсы имеют разные частоты и в совокупности создают шум, затрудняющий расшифровку результатов. Поэтому, если мы хотим с помощью ЭЭГ найти соответствие между движением и активностью мозга, нужно что-то с этим шумом сделать.

Однако сотрудники казанского Университета Иннополис вместе с коллегами из Германии сумели найти момент в работе нейронов, когда хаос в ЭЭГ снижается. Кроме альфа-волн, которые доминируют в покое, есть ещё одни ритмы, которые можно наблюдать, когда человек не двигается – это мю-ритмы. Когда мы совершаем какое-то движение, блокируется часть нейронов, генерирующих мю-ритмы. Исследователи предположили, что одновременно будет снижаться и уровень хаотичности сигналов от нейронов моторной коры головного мозга, которая контролирует движения. И тогда импульсы нейронов станут более упорядоченными, что будет видно в ЭЭГ.

Для проверки гипотезы пригласили здоровых добровольцев, которые должны были поочерёдно сжимать левую и правую руки. В статье в Chaos: An Interdisciplinary Journal of Nonlinear Science говорится, что хаотичность в ЭЭГ действительно заметно снижалась. Более того,  в ЭЭГ удалось различить сигналы, которые возникают в начале движения, и даже различить сигналы, соответствующие движениям левой и правой рук. Любопытно, что при анализе данных ЭЭГ использовали математический аппарат, широко используемый в исследованиях климата, так что в этой, казалось бы, сугубо нейробиологической работе активно участвовали специалисты-климатологи.

Возможно, в дальнейшем с помощью ЭЭГ можно будет классифицировать самые разные движения человека, что, в свою очередь, поможет создать те самые умные протезы, управляемые силой мысли.

Работа выполнена при поддержке Российского научного фонда (РНФ).

По материалам пресс-службы РНФ.

 

Добавьте свой комментарий

Plain text

  • Переносы строк и абзацы формируются автоматически
  • Разрешённые HTML-теги: <p> <br>
LiveJournal
Регистрация

Другие статьи в этой рубрике

Графен в медицине

Ксения Рыкова для ПостНауки

Астрономы поймали длинный гамма-всплеск от взрыва далекой сверхновой

Астрономы смогли достоверно обнаружить новую пару сверхновая—гамма-всплеск в далекой галактике. Подобные открытия позволяют понять связь между этими катаклизмами и более детально разобраться в механизмах генерации гамма-всплесков.

Взрыв сверхновой разложили на этапы

Сверхновые звёзды — основной источник элементов жизни во Вселенной. Существование человечества и всего живого стало возможно благодаря тем химическим элементам, которые были получены в результате взрыва сверхновых звёзд.

Новости в фейсбук