FestivalNauki.ru
En Ru
cентябрь-ноябрь 2020
176 городов
September – November 2020
312 cities
09-11 октября 2020
МГУ | Экспоцентр | 90+ площадок
14–16 октября 2016
Центральная региональная площадка
28–30 октября 2016
ИРНИТУ, Сибэскпоцентр
14–15 октября 2016
Центральная региональная площадка
23 сентября - 8 октября 2017
«ДонЭкспоцентр», ДГТУ
ноябрь-декабрь 2018
МВДЦ «Сибирь»,
Вузы и научные площадки города
6-8 октября 2017
Самарский университет
27-29 октября
Кампус ДВФУ, ВГУЭС
30 сентября - 1 октября
Ледовый каток «Родные города»
21-22 сентября 2018 года
ВКК "Белэкспоцентр"
9-10 ноября 2018 года
Мурманский областной Дворец Культуры
21-22 сентября 2019 года
22-23 октября 2019 года
29-30 ноября 2019 года
7-8 сентября 2019 года
27-29 сентября 2019 года
4-5 октября 2019 года
10-12 октября 2019 года

Ученый из МГУ с коллегами создал чип, который может заменить сложную лазерную установку

Группа российских и швейцарских физиков создала чип, генерирующий фемтосекундные импульсы света с особым частотным спектром под названием «оптическая гребенка», то есть делающий то, чего прежде удавалось добиться лишь с помощью больших и сложных лазерных установок. Сообщение об этом опубликовано 1 января 2016 года в журнале Science.

Эту работу можно назвать заключительным аккордом в серии работ группы, касающихся исследований оптических гребёнок — так называются сигналы, чей частотный спектр представляет собой набор равноотстоящих друг от друга линий. Начавшись с исследования шумов в оптических сигналах такого сорта, эти работы привели сначала к созданию генераторов этих сигналов с сердцем в виде диска миллиметрового диаметра и закончились созданием полноценного чипа, почти пригодного для коммерческого использования.

Фемтосекундные оптические гребенки — недавнее изобретение. Появившись в конце 90-х, они оказались настолько востребованными в самых разных областях — в системах телекоммуникации, в лазерной спектроскопии, в астрофизике и так далее, — что уже в 2005 году их авторы, Теодор Хэнш из Германии и Джон Холл из США, получили за них Нобелевскую премию. Для получения таких гребёнок использовались лазеры с синхронизацией мод. При этой методике лазер, излучает свет не одной частоты, как это принято думать о лазерах, а сразу несколько «мод» — световых лучей с кратными частотами. Если эти моды синхронизировать, то есть сделать так, чтобы их фазы были жестко связаны между собой, то в результате интерференции этих мод непрерывный луч лазера превратится в последовательность импульсов со спектром «гребенки».

За этой, без преувеличения, технологической революцией вскоре последовала другая — в 2007 году в лаборатории Тобиаса Киппенберга (тогда работавшего в группе Т. Хэнша, а ныне возглавляющего лабораторию в Федеральной политехнической школе Лозанны (Лозанна, Швейцария)) в микрорезонаторах из плавленого кварца, открытых, кстати, в МГУ, тоже были получены оптические гребенки, и для их создания уже не требовались громоздкие и сложные установки. Появилась возможность на порядки уменьшить размеры устройств. Генерация таких гребёнок связана с так называемым эффектом Керра, состоящим в том, что в нелинейных средах показатель преломления зависит от интенсивности падающего на него света.

Правда, это была не столько революция, сколько её начало — швейцарские исследователи, а позже и другие группы в разных лабораториях, фактически только показали принципиальную возможность создавать «гребенки» подобным образом, но то, что у них получалось, было ещё очень далеко от идеала, гребенки получались шумными, нестабильными (они походили на расчески с выломанными, да ещё вдобавок ползающими туда-сюда зубьями) и ученым предстояло решить массу проблем, чтобы запустить эти резонаторы в работу. Первой из них была проблема шумов. В сотрудничестве с группой Киппенберга ученые физического факультета МГУ в начале 2013 года решили её, доказав, что эти шумы не носят фундаментального характера, что от них можно избавиться, и показали, как это сделать. Оставалось главное — сделать «правильные» гребенки и создать с этим спектром последовательность импульсов с очень короткой, фемтосекундной длительностью (то есть с длительностью порядка 10 в минус пятнадцатой степени секунды). В конце того же года они справились и с этой проблемой.

Для создания таких гребенок физики МГУ и Российского квантового центра предложили использовать «солитоны», то есть компактно упакованные волны, своеобразные электромагнитные цунами, которые ведут себя, как частицы. По развитой в МГУ теории облучение лазерным светом дисков из таких нелинейных сред порождает в этих дисках движущиеся по кругу солитоны, в результате чего на выходе связанного с диском оптоволокна возникает последовательность импульсов, следующих друг за другом через время одного обхода солитоном окружности диска. В качестве резонатора физики использовали тогда миллиметровый диск из кристалла фторида магния. С его помощью им удалось получать импульсы-гребенки длительностью в 100-200 фемтосекунд.

В этом году российско-швейцарская команда закрепила успех и научилась напылять специальные микрорезонаторы для гребенок в чипах.

«Разница, конечно, огромная, — говорит один из российских соавторов статьи профессор физического факультета МГУ Михаил Городецкий. — Если в лазерах с синхронизацией мод для генерации импульсов используются сложные оптические устройства, среды и специальные зеркала, то мы получаем такие же стабильные импульсы в простом пассивном резонаторе, внедренном в микрочип и имеющем размеры не более 100-200 микрон».

Изменилось и качество гребёнок — теперь длительность импульсов удалось сократить со 100-200 до 30 фемтосекунд. Последнее достижение группы «Москва-Лозанна», по словам профессора Городецкого, не только самым категорическим образом снижает размеры, сложность и стоимость генераторов гребёнок, но вдобавок открывает новые горизонты для их использования в режимах, «недостижимых другими методами».

 

Добавьте свой комментарий

Plain text

  • Переносы строк и абзацы формируются автоматически
  • Разрешённые HTML-теги: <p> <br>
LiveJournal
Регистрация

Другие статьи в этой рубрике

Химики создали программу для безопасного хранения и утилизации реактивов

Американские ученые создали компьютерную программу для поиска безопасных и эффективных способов хранения и утилизации химических реактивов.

Гравитационная линза впервые помогла рентгеновским наблюдениям

Оптическое и рентгеновские изображения линзированной галактики
M. Bayliss  et al. / Nature Astronomy, 2019

Физики получили пластичное стекло

Ученые создали тонкие пленки из стеклообразного оксида алюминия, которые можно растягивать, сжимать и изгибать без появления трещин при комнатной температуре.

Новости в фейсбук