FestivalNauki.ru
En Ru
cентябрь-ноябрь 2020
176 городов
September – November 2020
312 cities
09-11 октября 2020
МГУ | Экспоцентр | 90+ площадок
14–16 октября 2016
Центральная региональная площадка
28–30 октября 2016
ИРНИТУ, Сибэскпоцентр
14–15 октября 2016
Центральная региональная площадка
23 сентября - 8 октября 2017
«ДонЭкспоцентр», ДГТУ
ноябрь-декабрь 2018
МВДЦ «Сибирь»,
Вузы и научные площадки города
6-8 октября 2017
Самарский университет
27-29 октября
Кампус ДВФУ, ВГУЭС
30 сентября - 1 октября
Ледовый каток «Родные города»
21-22 сентября 2018 года
ВКК "Белэкспоцентр"
9-10 ноября 2018 года
Мурманский областной Дворец Культуры
21-22 сентября 2019 года
22-23 октября 2019 года
29-30 ноября 2019 года
7-8 сентября 2019 года
27-29 сентября 2019 года
4-5 октября 2019 года
10-12 октября 2019 года

Астрономы нашли источник космических нейтрино

77 город Москва
Сотрудники ГАИШ МГУ в содружестве с Благовещенским педагогическим и Иркутским университетами обнаружили явление, которое позволяет установить источник нейтрино высоких энергий во Вселенной. Им оказалась сверхмассивная чёрная дыра, релятивистское жерло которой направлено в сторону Земли. Это ещё один шаг к пониманию того, как рождалась Вселенная. Работа опубликована в журнале The Astrophysical Journal Letters.

Одно из ключевых направлений развития современной астрофизики – это исследование свойств материи при сверхвысоких энергиях, в сотни и тысячи раз превышающих возможности Большого адронного коллайдера. Такие «бесплатные ускорители» находятся во Вселенной. Однако из всех частиц сверхвысоких энергий путешествовать в космосе могут только нейтрино – элементарные частицы, не имеющие заряда и обладающие феноменальной проникающей способностью. Но детектировать их очень непросто. Чтобы обнаружить источники нейтрино высоких и сверхвысоких энергий, были построены уникальные установки на Южном полюсе (IceCube), в Средиземном море (ANTARES), на дне Байкала и в Баксанском ущелье в Приэльбрусье. Сами нейтрино были детектированы, но откуда они приходят, оставалось загадкой. 
Рассеяние света во льду или в воде, которые являются рабочим телом детекторов нейтрино, приводит к размытию квадрата ошибок. Обычно он составляет величину, сравнимую с квадратным градусом. И даже если считать только сверхмощные активные галактические ядра, стреляющие точно в Землю – блазары, – то и их в каждом квадрате ошибок будет в среднем несколько штук. Поэтому просто обнаружение блазаров в квадрате ошибок не является доказательством того, что именно они источник происхождения нейтрино. Доказательством стало бы нестандартное явление на предполагаемом источнике, близкое по времени к нейтринному событию.
Глобальная сеть роботов-телескопов «МАСТЕР» МГУ почти 20 лет наблюдает минутные события в космосе и является мировым лидером в области ранних наблюдений гамма-всплесков. Начиная с 2015 года сеть активно участвует в программе быстрой оптической поддержки крупных физических и астрофизических экспериментов, таких как регистрация нейтрино сверхвысоких энергий. 
Одна из установок сети «МАСТЕР» – телескоп «МАСТЕР-Таврида», установленный в Крыму, – обнаружил быструю оптическую антивспышку сверхмассивной чёрной дыры через 76 секунд после того, как американский нейтринный детектор IceCube на Южном полюсе зафиксировал высокоэнергетические нейтрино, пришедшие из того же участка Вселенной.
«Блазар TXS 0506+056, зафиксированный нашим телескопом „МАСТЕР-Таврида“, находился в притушенном состоянии. Поле зрения телескопа „МАСТЕР“ составляет 4 квадратных градуса и полностью перекрывает квадрат ошибок источника нейтрино, – рассказывает Владимир Липунов, заведующий лабораторией космического мониторинга ГАИШ МГУ, руководитель Глобальной сети роботов-телескопов „МАСТЕР“, почётный профессор МГУ, профессор физического факультета,  – Через два часа блеск квазара возрос и вернулся к своему обычному в те дни состоянию. Таким образом, наши наблюдения с огромной достоверностью (50 сигма) показывают, что в минутах от регистрации нейтрино блазар находился в аномально притушенном состоянии. 
Нам удалось предложить правдоподобное объяснение этому явлению. Дело в том, что нейтрино столь высоких энергий может рождаться при столкновениях протонов сверхвысоких энергий с окружающими фотонами. Нейтрино появляется, а протон исчезает. Таким образом, зафиксированное явление легко объяснить, если предположить, что наблюдаемое нами оптическое излучение – это результат свечения тех самых протонов. Поэтому нейтринный всплеск сопровождается понижением оптической светимости».
Астрофизики МГУ внесли решающий вклад в эту работу, поскольку именно они разработали, установили и роботизировали телескопы «МАСТЕР». В исследовании приняли участие иностранные учёные, поддерживающие зарубежные пункты сети «МАСТЕР», которые расположены в обоих полушариях, от Благовещенска до Анд. Это обстоятельство и позволило российским специалистам практически круглосуточно следить за космосом. 
«„МАСТЕР“ – единственная в мире полностью роботизированная сеть поисковых телескопов, установленных во всех частях света, – напоминает Владимир Липунов. – В 2017 году аргентинский телескоп сети провёл независимую локализацию источника гравитационных волн. А теперь нейтрино! Эта работа показывает, насколько высок технологический уровень нашего оборудования. Оно наверняка подарит нам новые фундаментальные открытия во Вселенной».
РисунокВзаимодействие телескопов-роботов сети «МАСТЕР» с детектором нейтрино IceCube. Владимир Липунов/МГУ

Добавьте свой комментарий

Plain text

  • Переносы строк и абзацы формируются автоматически
  • Разрешённые HTML-теги: <p> <br>
LiveJournal
Регистрация

Новости в фейсбук