Альберт Эйнштейн и его уникальное наследие
Четырнадцатого марта 1879 года в городе Ульм родился человек, впоследствии перевернувший научный мир с ног на голову. Его работы лежат в основе понимания Вселенной — в частности, гравитации. В чем же вся гениальность трудов Альберта Эйнштейна и каково их место в XXI веке?
Когда юный Альберт Эйнштейн опубликовал Общую теорию относительности в 1915 году, вряд ли кто-то мог предположить, какое влияние она окажет на науку. Относительность изменила наше понимание Вселенной и предоставила новые способы изучения фундаментальной физики, которым подчиняется окружающий мир.
Несмотря на всю важность принципа относительности, с ней не все так просто, как хотелось бы. И пусть кому-то может показаться, что эта теория слишком абстрактна и оторвана от реальности, на самом деле она напрямую связана с нашим существованием на фундаментальном уровне. Она позволила изучить и исследовать космос, а на Земле она стоит за технологиями, связанными со множеством открытий: от GPS до ядерной энергии, от смартфонов до ускорителей частиц — множество инноваций, которые мы принимаем как должное, уходят корнями в теорию Эйнштейна.
Прежде всего стоит отметить, что Общая теория относительности состоит из двух отдельных теорий. Первая — Специальная теория относительности — опубликована в 1905 году и была принята научным сообществом со смешанными чувствами. В чем причина такой реакции? Дело в том, что Специальная теория относительности перевернула большую часть того, что — как казалось ученым — было известно о мире.
Альберт Эйнштейн и Нильс Бор во время Сольвеевского конгресса 1930 года / © Danish Film Institute/Paul Ehrenfest
До публикации Эйнштейном своего научного откровения было принято считать, что время всегда и везде протекает с одинаковой скоростью. Вне зависимости от скорости движения объекта природа секунд, минут и часов считалась неизменной. Однако Эйнштейн считал, что время на самом деле непостоянно и изменяется в зависимости от того, насколько быстро движется объект.
Великий ученый утверждал, что настоящая неизменная величина — константа — это скорость света. Свет движется с постоянной скоростью 299 792 458 метров в секунду в вакууме, тогда как время течет по-разному — в зависимости от скорости, с которой объект движется через пространство. Для объектов, движущихся очень быстро, время замедляется.
Это откровение пошатнуло основы физики, но на этом все не закончилось. Спустя всего десять лет гениальный нонконформист из бернского патентного бюро дополнил теорию новой деталью — на этот раз речь шла о гравитации.
Настоящим украшением идей Эйнштейна стала Общая теория относительности. Она отвечала на многовековой вопрос: как именно работает гравитация?
Когда в середине XVII века, как гласит популярная легенда, Исааку Ньютону на голову упало яблоко, родилась революционная теория гравитации. Ньютон определил, что гравитация существует, и постулировал ее воздействие, но не мог наверняка сказать, каковы ее истоки.
Ответ был найден спустя почти три века посредством Общей теории относительности Альберта Эйнштейна. Он считал, что, так как пространство и время «текучи» и изменчивы, их могут искривлять массивные объекты.
Представьте шар для боулинга посередине натянутого батута. Поскольку он тяжелый, то искривляет ткань, стягивая таким образом все объекты, находящиеся у краев батута, к центру. Гравитация работает похожим образом. Массивные объекты вроде Земли искривляют ткань пространства и времени, притягивая к себе материю, а также время и свет.
Три нобелевских лауреата по физике. Слева направо: Альберт Майкельсон, Альберт Эйнштейн, Роберт А. Милликан / © Smithsonian Institution Libraries/Wikimedia Commons
Как и многие другие теории, относительность непросто доказать окончательно. Но все собранные более чем за 100 лет данные указывают на абсолютную правоту Эйнштейна в этом вопросе. Часы, установленные на небоскребах, отмеряют время несколько быстрее, чем часы, установленные у их оснований, так как первые находятся дальше от центра Земли, а значит, и пространство-время на такой высоте искривлено меньше.
Иногда на снимках далекого космоса, таких как Hubble Ultra-Deep Field, можно видеть некоторые объекты, которые выглядят искаженными и увеличенными на фоне галактических скоплений: это феномен гравитационного линзирования. Масса таких объектов искривляет пространство-время, из-за чего изображение получается искаженным.
Однако, пожалуй, самым значимым доказательством Общей теории относительности стало событие, о котором было объявлено в 2016 году — спустя более чем 100 лет после публикации работы. Этим доказательством стали гравитационные волны — рябь на ткани пространства-времени. Они были зарегистрированы посредством детекторов LIGO (Laser Interferometer Gravitational-Wave Observatory, лазерно-интерферометрическая гравитационно-волновая обсерватория) в Ливингстоне и Хэгнфорде, разработкой которых с 1992 года занимался физик-теоретик Кип Торн.
Если пространство и время — это ткань, напоминающая поверхность батута, то такие масштабные и массивные события, как слияния черных дыр, будут создавать на ней рябь. Если теория Эйнштейна верна, то мы должны быть способны зарегистрировать эти волны, но до недавнего времени это было только теорией без экспериментальных доказательств.
В начале 2016 года ученые объявили, что применили детектор LIGO для регистрации гравитационных волн, точно определив субатомные расширения и сокращения, проходящие через пространство-время.
LIGO напоминает невероятно мощную линейку: он направляет лазерный луч между двумя зеркалами, расположенными в четырех километрах друг от друга, затем пускается лазерный луч и измеряется время, за которое лазер проходит этот путь. Из-за гравитационных волн все смещается, и если лазерный луч перестает двигаться синхронно, то для ученых это знак, что его путь пересекла гравитационная волна и вызвала субатомное смещение зеркала. Регистрацию гравитационных волн можно назвать самым главным преимуществом теории Эйнштейна. Помимо этого, относительность была применена для постулирования Большого взрыва и расширения Вселенной.
Относительность помогла нам предположить, что Вселенная на 95% состоит из темной энергии и темной материи. Эта же теория помогла разработать ускорители частиц, в которых электроны, протоны и другие элементарные частицы разгоняются до скоростей, близких к световой.
Теория относительности сделала для науки и нашего понимания устройства мира неописуемо много. А теперь, когда есть возможность регистрировать гравитационные волны, мы можем заглянуть еще глубже в устройство Вселенной, изучить такие объекты, как черные дыры и нейтронные звезды, опираясь на беспрецедентно точные предсказания теории.
Прошло чуть больше века с тех пор, как относительность Эйнштейна фундаментально перевернула наше понимание Вселенной. Но самое великое наследие ученого заключается не в его революционных теориях: его работа вдохновила тысячи ученых, которые в итоге последовали за ним в поисках истинной природы реальности.
Сегодня теория Эйнштейна регулярно подвергается различным проверкам, которые с достоинством проходит. Благодаря теории относительности и другим работам когда-то скромного работника бернского патентного бюро, у нас есть Стандартная модель, инфляционная модель Вселенной и новые гипотезы, рождающиеся в попытках понять самые глубинные принципы устройства вещей, которые помогли бы в исчерпывающей полноте описать Вселенную и реальность как таковую.
Источник: Naked Science (naked-science.ru)
Добавьте свой комментарий